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INTRODUCTION

In the preceding paper "Fourier Effectiveness and Order Summability,"
referred to by an added'!, in front of the formulas, e.g., "I (3.6)", we have
introduced order summability [g] and monotone summability methods A. The
basic result, which motivates the present paper, states that A is Fourier
effective if and only if A J L1*, where L1* denotes logarithmic order summa
bility. This follows from two results of the preceding paper, namely, that
I (3.6) is necessary for Fourier-effectiveness and that L 1* is Fourier-effective,
in combination with the fact that I (3.6) implies (and is equivalent to) A J ~ *.
The latter result is independent of Fourier series and will be proven in this
paper. Together with several implications concerning Fourier series it has
already been mentioned in Section 6 of the preceding paper.

Naturally, we shall discuss the general inclusion A J [g] for arbitrary A
and g. Section I gives sufficient conditions on A and g, while Section 2 gives
necessary conditions. They coincide for monotone methods A and well
behaved g (Section 3). As a rather general and typical example, we discuss,
in Section 4, Wiener-type methods (w). There we also prove inclusions of the
type A ~ [g].

In the preceding paper the importance of the intersection nA, A Fourier
effective, has been pointed out. It is interesting to note that almost the same
intersection is obtained by using Fourier-effective Wiener-type methods only.
More generally, in Section 5, we characterize the intersection n (w),
(w) :2 [g], which is almost [g], again. Finally, in Section 6, we discuss n N p ,

Np J [g], and nM p , M p J [g], where Np and M p denote monotone Norlund
means, resp. monotone arithmetical means. The former intersection coincides
with nC. (e > 0), and the latter with C1 as long as [g] is weak enough
(like L1*) but not equivalent to ordinary convergence. The independence ofg
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of these intersections is remarkable and shows the relative inflexibility of
these methods as compared to the Wiener-type methods. The special case
N p d L I * is related to the known results of Hille-Tamarkin and Karamata
concerning Fourier-effective Norlund means.

1. SUFFICIENT CONDITIONS FOR [g) C A

We consider summability methods A = (am) in the sequence-to-sequence
form, satisfying

(n --+ 00, v fixed),
(1.1)

00

An = L anv converges and An --+ 1
v~o

(n --+ (0).

THEOREM 1.1. Suppose that get) is defined on [0, 1) and that get) ?': O.
Let A satisfy (1.1) and assume that a sequence of integers Vn ?': 0 exists such
that

L (v + 1) I .danv I = 0(1), L (v + 1) I .danv I = 0(1), (1.2)
v>2vn

,L (vn - v) (1 + g ( :n~ \ )) I .danv I = 0(1), (1.3)
2Vn~V<Vn

L (v - vn) (1 + g (Vvn: 11)) I .danv 1= 0(1). (1.4)
Vn <v~2vn

Then [g) CA.

The proof depends upon the formula (Gn = I/(n + 1) L~~o Sv = Snl(n + 1»:

I: anv(sv - Gk) = (L + L) (v + 1)(Gv - Gk) .danv
v=o v<tk v>2k

+, L (v - k) ( S: =~k - Gk) .dan",
2k~v<2k,v *k

(n ?': 0, k?,: 0),

which holds when Sn --+ S (CI). (Note that [g) C CI , that Sv - (v + 1) Gk =

Sv - Sk - (v - k) Gk , and that vanv --+ 0 for v --+ 00, n fixed, is a consequence
of (1.2).)

If V n --+ 00, then the assertion is immediate, with k = vn . If Vn = 0(1),
we put k = 0 and observe that L:o (v + 1) I .danv I = 0(1). The proof for
an arbitrary sequence {vn} follows from the arguments used in these two
special cases.
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It is natural to assume that

g(t) t for t t,

and it will be convenient to define

g(O) > 0, (1.5)

g(t)=~g(+) for t>l,

g*(t) = tg(t) for t =1= 1, t?o O.

(1.6)

(1.7)

(The assumption g(O) > 0 does not restrict the generality since [g] is
equivalent to [g,,], git) = ex + g(t), ex ?o O. This observation will frequently
be used in the following.)

If g satisfies (1.5), then (1.2), (1.3) and (1.4) can be rewritten as

~o I v - Vn Ig* ( ~ : 11 ) I .danv I = 0(1).

V¥=Vn

(A special case of this condition was 1(6.1).)
For monotone methods, (1.8) can be simplified. We have

(1.8)

THEOREM 1.2. Let g satisfy (1.5), and let A be monotone. Suppose that

(Vn is as in I (3.7). Then [g] CA.
If A is triangular and Vn = n, then (1.9) takes the simpler form

to anvg (n ~ 1) = 0(1).

Proof. The left side of (1.8) equals

I anvg* C~ 1 ) + f anvg* ( : ~ 11 )
v=o n v=vn+l n

(1.10)

+ v1+2 anv(v - 1- vn) (g*( :n~ ~ ) - g* (vn ~ 1))'
where the last two terms are :(;0. Therefore, (1.8) is a consequence of (1.9).
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Remarks. I. Conditions (1.8) and (1.9) resp. (1.10) are different, as can
be seen in the special case A = C1 .

2. It follows from

k 1 k+m-1 2k-1 k

L: m L: any = L: any L:
m~l v~k-m v~O m=max(k-v,v-k+1) m

that I (3.6), for positive (regular) A, is equivalent to

(n ):; 0, k ):; 1)

k-1 k 00 v + I
~o any (1 + log k _ J + V~k any (I + log Y + 1 _ k) = 0(1),

(n ):; 0, k ):; 1)
(1.11)

which is, for k = Y n + 1, condition (1.9) with g(t) = I + log 1/(1 - t).
Hence, for monotone methods, I (3.6) is sufficient for A J £1*. It is also
necessary, since A J £1* implies Fe-effectiveness of A which, in turn, implies
I (3.6). We have used this result in Section 6 of the preceding paper. A more
direct proof, based on Theorem 3.2, will be given at the end of Section 3.

2. NECESSARY CONDITIONS FOR [g] ~ A

Let A be an arbitrary matrix and let g(t) ):; °for t E [0, 1). The summability
Sn -+ S (A) involves the existence of an = :L:o anvsv (in some sense, e.g.,
ordinary convergence or C1-summability) and an -+ s (n -+ (0). If [g] C A,
then A is regular since [g] is regular.

Clearly, the summability field of [g] is a Banach space <g) with the norm

II{sn}llg = sup I a
nm I,

O~n.O~m~n 1 + g (_m__) i
n + 1 I

1 n

a = " S
nm 11 + 1 - m v~ v,

and the coordinates Sn depend continuously upon the sequence {sv}. If [g] C A,
then the linear mapping

takes sequences of <g) into the Banach space of convergent sequences, with
norm

II{an}11 = sup I an I = II{sn}IIA .
n~O

Since an, by Banach's limit theorem, depends continuously upon {sn}, our
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mapping is closed and hence continuous. Thus, the inclusion [g) C A implies
the existence of a constant M such that

for (2.1)

These arguments are standard, and (2.1) is actually the main condition
involved in the inclusion. At the moment we do not know necessary and
sufficient conditions for (2.1) in simple terms of any and g. We shall derive
necessary conditions by constructing special sequences {sik)}, depending
upon a parameter k, which are uniformly [g)-bounded and, therefore,
uniformly A-bounded. In Section 3 we shall see that for monotone methods
the sufficient conditions of Section 1 coincide with the necessary conditions.

Our construction requires further conditions on g. Suppose that

°< rg(t)dt < CIJ.
o

where

1 figet) = -1- g(x) dx
- t t

°:s;; get) t for t t (t E [0, 1»,

for tE [0,1),

(2.2)

Then (1.5) holds automatically, and we use (1.6) and (1.7) again. We also
define

get) = ;2 g (-H for t > 1. (2.3)

THEOREM 2.1. Let g satisfy (2.2), and let A d [g) be arbitrary. Then for
some constant M > 0,

I
00 f(V+!l/(k+l) I
v~ anvCk + 1) v/(k+1) get) dt :s;; M (n ;:?: 0, k ;:?: 0). (2.4)

In particular, if any ;:?: °(n, v = 0, 1,...) then, for n ;:?: 0, k ;:?: 0,

(2.5)

(2.6)

If (A is regular and) vanv = 0(1) (v ---+- 00, n fixed), then (2.4) is equivalent to

I L (v - k) g* ( ~ t ~ )Janv I :s;; M'
v,>"k

(n ;:?: 0, k ;:?: 0). (2.7)
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Proof First we derive some simple inequalities and identities.

get) ~ get) (t E [0, I)), get) ~ i get) (t > I), (2.8)

get) ~° for t t 00 (t > I), (2.9)

I: g(x) dx = (I - +) g (+) = (t - I) get) (t > I).

Define g*(t) = tg(t) - (I - t) get) (t ~ 0, t oF I), and observe that

I: g*(x) dx = (I - t) g*(t) (t E [0, I)),

(g*(X) dx = (t - I) g*(t) (t > I),

(g*(X) dx = (t - I) g*(t) (t ~ 0, t oF I),

get) - g*(t) is bounded for t ~ 0,

in view of (2.2) and (1 - t) get) = 0(1) (t -- I ± 0).
The key to the proof is the following inequality:

t oF I (2.10)

b ~ a I: get) dt ~ 2g (~)

There are three cases: (i) If b ~ I, then

for °~ a < b. (2.11)

I b I II a)
b - a I get) dt ~ I _ a get) dt = g(a) ~ g (b .

a a

(ii) If a < I < b, then

1 fb - I fb/a _ 2 (a) (a)
b - a a get) dt ~ b _ a alb get) dt = b g b :« 2g b .

(iii) If a ~ I, then

1 Ib
- 1 Ib

- 1 (1) (a)b - a a get) dt :« b - 1 1 get) dt = bg b :« g b .

Depending upon an integer k > 0, we define a sequence

(n+1) /(k+1J

sn(k) = (k + 1) f g(t)dt > 0
n/(k+l)

(n > 0).
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Obviously,

(n --+ 00, k fixed);

therefore, sn(k) --+ 0 [g]. Furthermore, by (2.11),

_ k + I ftn+ll/(k+U _
unm(k) - + 1 get) dt

n - m m/(k+l)

~ 2g ( n: 1) ~ 2 (1 + g (n : 1))
for 0 ~ m ~ nand k ): O. If we apply (2.1) we obtain (2.4).

Next, we define

(n+ll/(k+ll

Sn *(k) = (k + 1) f gAt) dt
n/(k+l)

and note that

sn(k) - Sn *(k) is uniformly bounded

(n ): 0, k ): 0)

(n ): 0, k ): 0),

in view of (2.10). If A is regular, condition (2.4) is equivalent to

(n ): 0, k ): 0). (2.12)

If vanv = 0(1) (v --+ 00, n fixed), partial summation can be used, and (2.12)
takes the form (2.7).

If any ): °(n, v = 0, I, ...), (2.5) and (2.6) follow immediately from (2.4),
because of (2.2) and (2.9).

3. NECESSARY AND SUFFICIENT CONDITIONS FOR [g] C A

From Theorems 1.1 and 2.1 we obtain

THEOREM 3.1. Let g satisfy (2.2), and let A be monotone. Then [g] C A is
equivalent to each of the following requirements:

Condition (2.7), even with k = V n ,

Condition (2.4), even with k = V n ,

Condition (2.5), even with k = Vn , in conjunction with (2.6), even with
k = V n and k = V n + 1.
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Proof In view of Theorem 2.1, we need only show that these requirements
are sufficient.

Under the given assumptions on A and g, conditions (2.7) with k = Vn and
(1.8) are identical, and (2.7) is equivalent to (2.4) (by Theorem 2.1). It then
follows from Theorem 1.1 that the first two requirements are sufficient. As
to the third requirement, we show that (2.4) with k = Vn is a consequence of
(2.5) with k = Vn and (2.6) with k = Vn , Vn + 1. We have

and this, together with a similar estimate of

00 (v+1) / (Vn+1)

L anv(vn + 1) f g(t) dt,
v=vn+2 v/(vn+l)

yields

00 (v+l)/(vn+l)

L anv(vn + 1) f g(t) dt
v=o v I (vn+l)

The third requirement in Theorem 3.1 and Theorem 1.2 lead to the question
whether the conditions (1.9) are also necessary and sufficient for [g] C A in
certain cases. If some € > °exists such that g(t) ;;? €g(t) as t -4- I - 0, then
it follows from (1.6) and (2.8) that the combined conditions (2.5) and (2.6)
are equivalent to

00 k + 1L anvg ( v + 1 ) ~ M* (n;;? 0, k ;;? 0)
v=k+l

(3.1)

(A regular and anv ;;? °for n, v = 0, 1,... ; g satisfying (2.2». In view of
g(t) = g(t) - (1 - t) g'(t), this is the case if

lim sup (1 - t) g'«t» < 1.
t->l-{) g t (3.2)
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Thus we have

THEOREM 3.2. Let A be monotone, and let g satisfy (2.2) and (3.2). Then
(3.1), even with k = Vn , is necessary and sufficient for [g] ~ A.

Remark. For get) = 1 + log I/O - t) the conditions (2.2) and (3.2) are
satisfied. It follows from Theorem 3.2 that for monotone A, L I * ~ A if and
only if (1.11), i.e., I (3.6) holds.

4. WIENER-TYPE METHODS

(4.1)wet) t for t t,wet) ~ 0,

Let w be a function defined on [0, 1) and satisfying

(W(t)dt = 1.

Because of

I
n

/
ln

+1l 1 n ( V ) II
o wet) dt ~ n + 1 v~o w n + 1 ~ 0 wet) dt,

the transformation Wn = l/(n + 1) L~=o w(v/(n + 1» Sv defines a monotone
(vn = n) and triangular summability method (w), a Wiener-type method, and
we shall write Sn ---+ S (w) when Wn ---+ s.

In this section we shall discuss conditions for the inclusion [g] ~ (w), and
also for (w) ~ [g]. Concerning the first of these relations, we derive from
Theorems 1.2, 3.1 and 3.2 the following result.

THEOREM 4.1. Ifg satisfies (1.5), then a sufficient condition for [g] ~ (w) is

rwet) get) dt < 00.
o

(4.2)

Ifg satisfies even (2.2), then a necessary and sufficient condition for [g] ~ (w)
is

I: wet) get) dt < 00 (4.3)

or, equivalently,

r-o
(1 - t) get) dw(t) < 00.

o
(4.4)

If g satisfies (2.2) and (3.2), then (4.2) is also necessary.
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Proof Since wand g are nonnegative and nondecreasing, we have

In/(n+l) 1 n ( V ) (V II
o w(t) g(t) dt ~ n+T v~ w n+T g n + 1) ~ 0 w(t) g(t) dt,

i.e., in the present case condition (4.2) is condition (1.10). A similar argument
shows that (4.3) is condition (2.4) (k = vn). It remains to show that (4.3) and
(4.4) are equivalent, i.e., that (4.3), and also (4.4), implies

(1 - t) g(t) w(t) = 0(1) as t ---+ 1 - 0. (4.5)

(Note that

s:-< w(t) g(t) dt = -w(t) { g(x) dx [-< + s:-< (1 - t) g(t) dw(t)

(0 < € < 1).)

Let (4.3) be satisfied. Then (4.5) follows from

I
I 1tw(x)ff(x) dx ~ w(t) It g(x) dx = (1 - t) g(t) w(t).

Let (4.4) be satisfied. We define a bounded, nondecreasing function

F(t) = I: (1 - x) g(x) dw(x), for t E [0, 1),

and observe that

(4.6)t E [0, 1).forI
t 1

w(t) - w(o) = 0 (1 _ x) g(x) dF(x)

Since (1 - t) g(t) = I: g(x) dx ~ °as ttl, and I:-o
dF(x) = 0(1) as t ---+ 1 - 0,

it follows that w(t) - w(o) = 0(1/(1 - t) g(t» (t ---+ 1 - 0), which implies
(4.5).

Remark. We see from this proof that (4.4) can be reformulated to yield
the following result: Ifg satisfies (2.2), then (w) :J [g) if and only if w is of the
form (4.6) with a bounded, nondecreasing F. Any such function F, apart from
a constant factor (normalization), can actually occur.

Next, we turn to the inclusion (w) C [g]. Using the concept of a mean-value
condition, we can employ standard arguments to discuss even the more
general inclusion relation A C [g] for a triangular and monotone A (see,
e.g., [6]).
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A triangular matrix A = (anv) satisfies the mean-value condition MK(A) if
an inequality

(0 :'( m :'( n)

holds, with K independent of m, nand {sJ.

THEOREM 4.2. Let A be triangular and monotone (vn = n), and suppose
that MK(A) holds. Then A c: [g] if € > 0, 8 E (0, 1) exist such that

E
anm ?': for n?,: 0, 8n :'( m :'( n. (4.7)

(n + 1 - m) g (n ~ 1)

Proof Let Sn --°(A). We have A c: C1 (see, e.g., [6, Theorem II.2ID,
and, hence, it is sufficient to show that

But MK(A) implies

for n -- 00, uniformly
in 8n:'( m :'( n. (4.8)

sup I±anvsv 1-- 0
O~p<q<n v=p

for n -- 00 (4.9)

[6, Theorem II.8, Lemma IIA], and (4.8) follows from

by (4.7) and (4.9).
It remains to give conditions which ensure MK(w). We have M1(w) if

w(vj(n + 2))jw(vj(n + 1)) ~ for v t, 0 :'( v :'( n [6, Lemma II.5, Theorem II.l6];
therefore, M1(w) is a consequence of w(ax)jw(bx) ~ for x t whenever°:'( a < b :'( 1 (0 :'( x < 1). If w' exists, then

xw(bx) d w(ax) _ (axw'(ax) _ bxW'(bx))
w(ax) dx w(bx) - w(ax) w(bx)'

Thus we have

THEOREM 4.3. Let (w) be a Wiener-type method with w(O) > O. Suppose
that w'(t), t E [0, 1), exists and that

t w'(t) i
wet)

for t i. (4.10)
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Then M1(w) holds. Furthermore, if g satisfies (1.5), the inclusion (w) C [g] is
equivalent to

lim inf (I - t) get) wet) > o.
t->l-()

(4.11)

(4.12)

Only the necessity of (4.1 1) needs further explanation: The inclusion
involves, in particular, that Sn ->- 0 (w) implies Sn = 0(1) g(n/(n + 1». Using
the standard argument with the diagonal elements of (w), it follows that

(n + 1)/w (n ~ 1) = O(I)g (n ~ I)' or (1- t)w(t)g(t) ~ € > 0

(t = n ~ I)'
We mention below some examples of methods (w) and their relations to

certain methods [g]:

1. Let wit) = K(1 - tt-\ 0 < K ~ 1. Then (w,,) ~ C (C" denotes the
Cesaro method of the order K). This follows by a Theorem of Miesner [5]
from the observation that (w,,) is essentially the Norlund mean N'P'
Pn = (n + 1)"-1 (or by [3, Satz 6] and the fact that (n + 1 - v)"-I/(n-~~~-I) .j,
as v t, v ~ n). The function w" satisfies (4.10).

2. Let W(a)(t) = Ka/(1 - t)(ca+ loga 1/(1 - t», 0: > I, ca ~ (0: - l)a-\
where K a is a constant such that J~ w(a)(t) dt = 1. A short calculation shows
that W(a)(t) t for t t. If Ca ~ (0: - l)a-1 0:a, then (4.10) is satisfied, since with
v = log 1/(1 - t), t(w;a)(t)/W(a)(t» = (ev - 1)(1 - o:va- 1/(Ca + va», and the
derivative with respect to v of the last right side, apart from a factor eV

, is

o:va- 1 ( 0:(0: - 1) va- 2 0:2v2a-2)
I - + (1 - e-V

) - + ..".--,----,=_
Ca + va Ca + va (Ca + Va)2

~ 1 _ o:v
a
-

1 + V (_ 0:(0: - 1) va
-

2
) ~ O.

Ca + va Ca+ va

For Ca = (0: - l)a-l o:a, we denote (W(a» by La .
Let git) = 1/(1 - t) wit) = (1/K)(1 - t)-K, 0 < K ~ 1. The method [gK]

will be denoted by CK*. The function gK satisfies (1.5), and it satisfies (2.2)
and (3.2) when 0 < K < 1.

Let g(a)(t) = 1/(1 - t) w(a)(t), Ca = (0: - l)a-1 0:a, 0: > 1. This function
satisfies (1.5), and (for 0: = 1) the function g(})(t) = 1 + log 1/(1 - t)
satisfies (2.2) and (3.2). The method [g(a)] will be denoted by La*.

We have the following relations:

CK C CK *, 0 < K ~ 1 (Theorem 4.3),
CK ~ CK *, 0 < K < 1 (Theorem 4.1),
C1 ~ C1* (since, trivially, C1* C C1),

CK* C CK+e' € > 0, 0 < K ~ 1 (Theorem 4.1),
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La c: La*, ex > 1 (Theorem 4.3), l
(4.13)

La* C La+e+l' IX ~ 1, € > 0 (Theorem 4.1),

Lex* c: CK , IX ~ 1, K > 0 (Theorem 4.1), I
(4.14)

La C CK , IX > 1, K > 0 (from (4.13) and La*C CK).

It follows from (4.14) that La C ()K>O CK for every IX > 1. Here the
inclusion is strict (note that La C La+<+l from (4.13), and that La ~ La+<+l
since the diagonal terms of these matrices have different order).

Given a Wiener-type method (w), Theorems 1.2 and 4.3 can be used to find
conditions for (w) CA. First we have (roughly) (w) C [1/(1 - t) w(t)] = [g],
and [g] C A, if (1.9) holds. Thus, in case of a triangular A, we have roughly
(w) C A when

n 1
L anv = 0(1).
v=o (1 V) ( v )

-n+I wn+T

For WK and a monotone (vn = n) and triangular A, all the conditions involved
are satisfied, and CK C A, 0 < K ~ I,followsfrom

n (n + 1 )K
v~ anv n + 1 - v = 0(1).

5. THE INTERSECTION n(w), (w):2 [g]

(4.15)

The discussion of this problem will be based upon the Remark fOllowing
Theorem 4.1.

THEOREM 5.1. Let g satisfy (2.2). Then a sequence {sv} is summable to
zero by all methods (w) with (w) J [g] if and only if

and

(n -+ (0) (5.1)

n+ : - mv~ Sv = 0 (1 + g (n ~ 1 )), uniformly for 0 ~ m ~ n.

(5.2)

Proof We note, first, that (5.1) is necessary since C1 J [g]. We have
Sn -+ 0 (w) for all (w) J [g] if and only if Sn -+ 0 (Aw - Bw*), whenever
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(w), (W*) d [g], A, B, ;:?: 0, i.e., if and only if

= Aw(O) - Bw*(O) i S + _1_ i S Iv/(n+l) d(AF(x) - BF*(x»
n + 1 v~O v n + 1 v~l v 0 (1 - x) g(x)

= In + IIn -+ 0.

Here In -+ 0, and it remains to discuss the condition IIn -+ ° when
4>(x) = AF(x) - BF*(x) is any function in V[O, 1]. But

n I,,/(n+l) n d4>(x) I

IIn = L L Sv ( + 1)(1 _ ) () = I bn(x) d4>(x),
,,~l (,,-I)/(n+1) v~" n x g x 0

where

1
bn(x) = ( 1)(1 ) () L SV'n + - x g X (n+1).,«v«n

(The first representation of IIn shows how f~ bn(x) d4>(x) must be interpreted
when discontinuities of bn and 4> coincide.) It follows from (5.1) that

bnCx) -+ ° as n -+ 00, for every fixed x E [0, 1], (5.3)

and from IIn -+ 0, by the Banach-Steinhaus theorem applied to absolutely
continuous functions 4>, that

bn(x) = 0(1) as n ---+ 00, uniformly for x E [0, 1]. (5.4)

Conversely, (5.3) and (5.4) imply IIn ---+ 0, and Theorem 5.1 follows since
(5.2) is equivalent to (5.4). (Note that (1 - x) g(xH.)

One might ask whether (5.1) and (5.2) imply Sn ---+ °[g]. This is not the
case. As a counter-example, let Sn = g(1 - l/(n + 1» for n = 3k, Sn = °
otherwise. We have Sn ---+ °(el ) (note that Sn = o(n), by (2.2», and this
implies (5.2) for m ~ n12. But, for nl2 < m ~ n,

( 1)g 1---
1 ~ n + 1 _ n + 1 II -( )d

L... Sv """ - g t tn + 1 - m v=m n + 1 - m n + 1 - m 1-1I(n+1)

n + 1 II _ ( m )~ get) dt = g -- .
n + 1 - m m/(n+1) n + 1
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Hence, {sn} satisfies (5.1) and (5.2), but it is not summable [g] sillce
Sn =J= o(g(1 - I/(n + I))).

For g - I, Theorem 5.1 shows that a sequence is summable by all methods
(w) if and only if it is bounded and summable C1 • Remembering that every
Wiener-type method satisfies (w) C C1 , we see that all methods (w) are
equivalent for bounded sequences. In particular, there is no Wiener-type method
which is equivalent to convergence.

For get) = I + log 1/(1 - t), our results show that no method (w) is
equivalent to L 1 *, but the Wiener-type methods stronger than L 1 * almost
exhaust all Fourier-effective (monotone) methods.

6. NORLUND MEANS AND ARITHMETICAL MEANS

In this section we shall discuss the class of monotone N6rlund means,
and the class of monotone arithmetical means, which are stronger than L 1*
or some other order summability (different from convergence). For g, the
condition

will be of importance.

get) --+ 00 (t --+ I - 0) (6.1)

THEOREM 6.1. Let g satisfy (2.2) and (6.1), and suppose that A is triangular,
regular, with anv ?: 0 (n, v = 0, 1'00')' Then A;;;,2 [g] implies

. f MIII anv :(; ---------
/L";;v";;n (n + I - fL) g (n ~ I )

v~ anv :(; M / g (n ~ I )

(0 :(; fL :(; n),

(0 :(; fL :(; n),

(6.2)

(6.3)

(n --+ 00, t --+ I - 0), (6.4)

and the existence of no ?: 0, to E (0, I), 8 > °such that

n sup anv ~ 0 for n ~ no,
v~nt

Proof It follows from (2.2) and (2.4) that

tE(to,l). (6.5)

n J(v+l)!(n+ll 1

M ~ L anv(n + I) get) dt ~ ( inf anv)(n + I) J get) dt
v~" v/(n+l) /L";;v";;n ,,/(n+l)
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This gives (6.2) and (6.3). Since, necessarily, get) -- 00 (t -- 1 - 0), it follows
that

(n -- 00, t -- 1 - 0)

which is equivalent to (6.4). A trivial consequence of (6.4) is (6.5).
In the statement of Theorem 6.1 we have avoided the assumption of

monotonicity for A which would have simplified the conditions (but greatly
reduced the generality). Condition (6.4) is typical for the inclusion A J [g]
with some (suitable) g. If A is arbitrary, there is nothing much that can be
said about possible g's. However, if A is a monotone Norlund mean, we may
always take [g] = C.* (for some E > 0), and if A is a monotone arithmetical
mean, we may take [g] = C1 *. To show this is the object of the following
theorems. If [g] = L 1*, we obtain relations with Fourier-effectiveness.

Let {Pn} be a monotone sequence with Pn > O. For the corre
sponding Norlund mean N'[J (i.e., the triangular A with any = Pn-v/Pm
Pn = Po + ... + Pn), condition (6.5) is equivalent to

Pn = O(n).
Pn

(6.6)

THEOREM 6.2. Let {Pn}, Pn > 0 (n ;;?; 0), be monotone, and let the
corresponding Norlund mean N'[J be regular. Then (6.6) is equivalent to each of
the following statements:

N'[J J [g]for some g satisfying (2.2) and (6.1),

N'[J J L1*,
N'[J J C.for some E > O.

(6.7)

(6.8)

(6.9)

Proof Condition (6.7), and its special cases (6.8) and (6.9) (see (4.14»
imply (6.6), by Theorem 6.1.

Next, suppose that (6.6) is satisfied, i.e.,Pn/Pn = 1 - Pn-1/Pn ;;?; K/(n + 1)
for some K > O. Consequently, Pn-1/Pn ~ 1 - K/(n + 1), and, for m ~ n,

= 0(1) e-K1og(n+!)/(m+!) = 0(1) ( : t ;t·
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Let 0 < E < min(1, K). Then C< c: N p follows from (4.15) since

Pn-v = Pn-v Pn-v = 0(1) (n - v + I)K
Pn Pn-v Pn n - v + 1 n + 1

implies

f Pn-v ( n + 1 )< = 0(1).
v~o Pn n + 1 - v

Finally, (6.9) implies (6.7) and (6.8).

Remarks. 1. Hille and Tamarkin [1] have shown, for 0 < Pn t, that N p

is Fe-effective if and only if

It follows from

1 n
p L: Pvl(v + 1) = 0(1).

n v=o
(6.10)

~ Pn-v I n + 1 1 ~ I n + 1 1 n~l V + 2
v-:-o Pn og n + 1 - v = Pn v~ Pv og~ = Pn v-:-o Pvlog v + 1

that (6.10) is essentially the condition (1.10) with g(t) = 1 log 1/(1 - t).
Theorem 3.2 then shows that (6.10) is equivalent to N p J L1*. Thus, we have
a new proof of this result, and (6.10) can be replaced by the simpler con
dition (6.6) (which immediately implies (6.10)).

2. Karamata [4] has shown that (6.9) is a consequence of (6.10).
There are similar results for arithmetical means M p (i.e., the triangular A

with any = PvlPn , Pn = Po + ... + Pn). Let {Pn} be a sequence with 0 < Pn t
for n t. Then (6.5) implies, for some t E (0, 1),

n
p sUPPv ~ S,

n v~nt

(6.11)

It follows from (6.11) and Pn ~ Lnt'<v<nPv ~ n(1 - t') infv?>nt' Pv that
infv?>nt' Pv ~ K SUPv<ntPv for some K, depending on t' E (0,1), and for all
large n. Taking l' E (t, 1), we see that numbers p > 1 and C > 0 exist such
that

whenever i ~ pj. (6.12)

Let m be the integer with nip ~ m < nip + 1. Then it follows from (6.12)
that

npn ~ nC Pm ~ nC Pm
Pn Pm + ... + Pn "" Pm(n + 1 - m) ,
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and this shows that
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npn = 0(1)
Pn

(6.13)

is a consequence of (6.11) when Pn t.

THEOREM 6.3. Let {Pn}, Pn > 0 (n ;? 0), be monotone, and let the corre
sponding arithmetical mean M p be regular. Then (6.13) is equivalent to each
of the following statements:

M p J [g]for some g satisfying (2.2) and (6.1), (6.14)

(6.15)

(6.16)

Proof When Pn t, then M p J C1 , and we need only consider the case Pn t.
Condition (6.14), and its special cases (6.15) and (6.16) imply (6.13) as in

the proof of Theorem 6.2. Suppose now that (6.13) is satisfied. Then (6.16),
and even M p ~ C1 , follows (see [2, Satz 16].)
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